On Some Exact Values of Three-Color Ramsey Numbers for Paths

نویسندگان

  • Janusz Dybizbański
  • Tomasz Dzido
چکیده

For graphs G1, G2, G3, the three-color Ramsey number R(G1, G2, G3) is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with 3 colors, then it contains a monochromatic copy of Gi in color i, for some 1 ≤ i ≤ 3. First, we prove that the conjectured equality R3(C2n, C2n, C2n) = 4n, if true, implies that R3(P2n+1, P2n+1, P2n+1) = 4n + 1 for all n ≥ 3. We also obtain two new exact values R(P8, P8, P8) = 14 and R(P9, P9, P9) = 17, furthermore we do so without help of computer algorithms. Our results agree with a formula R(Pn, Pn, Pn) = 2n−2+(n mod 2) which was proved for sufficiently large n by Gyárfás, Ruszinkó, Sárközy, and Szemerédi in 2007. This provides more evidence for the conjecture that the latter holds for all n ≥ 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Multicolor Ramsey Numbers for Paths and Cycles

For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...

متن کامل

On Some Ramsey and Turan-Type Numbers for Paths and Cycles

For given graphs G1, G2, ..., Gk, where k ≥ 2, the multicolor Ramsey number R(G1, G2, ..., Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, there is always a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. Let Pk (resp. Ck) be the path (resp. cycle) on k vertices. In the paper we show that R(P3, Ck, Ck) = R...

متن کامل

On Some Three-Color Ramsey Numbers for Paths

For graphs G1, G2, G3, the three-color Ramsey number R(G1, G2, G3) is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with 3 colors, then it contains a monochromatic copy of Gi in color i, for some 1 ≤ i ≤ 3. First, we prove that the conjectured equality R(C2n, C2n, C2n) = 4n, if true, implies that R(P2n+1, P2n+1, P2n+1) = 4n + 1 for all n ≥ 3...

متن کامل

On some three color Ramsey numbers for paths and cycles

For graphs G1, G2, G3, the three-color Ramsey number R(G1, G2, G3) is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with 3 colors, then it contains a monochromatic copy of Gi in color i, for some 1 ≤ i ≤ 3. First, we prove that the conjectured equality R(C2n, C2n, C2n) = 4n, if true, implies that R(P2n+1, P2n+1, P2n+1) = 4n + 1 for all n ≥ 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012